NASA-JPL Radio Occultation Publications


These are some of the most relevant publications between group members and collaborators across many institutions.


  1. Cardellach, E. S. Oliveras, A. Rius, S. Tomás, C. O. Ao, G. W. Franklin, B. A. Iijima, D. Kuang, T. K. Meehan, R. Padullés, M. de la Torre Juarez, F. J. Turk, D. Hunt, W. S. Schreiner, S. V. Sokolovskiy, T. Van Hove, J. P. Weiss, Y. Yoon, Z. Zeng, J. Clapp, W. Xia‐Serafino, and F. Cerezo, “Sensing heavy precipitation with GNSS polarimetric radio occultations,” Geophys. Res. Lett., https://doi.org/10.1029/2018gl080412, 2018


  2. Cardellach, E., R. Padulles,, S. Tomas, F. J. Turk, C. O. Ao,  and M. de la Torre Juarez, “Probability of intense precipitation from polarimetric GNSS radio occultation observations,” Q.J.R. Meteorol. Soc.. https://doi.org/10.1002/qj.3161, 2017.


  3. G. Basha, P. Kishore, M. Venkat Ratnam, S. Ravindra Babu, I. Velicogna, J. H. Jiang, and C. O. Ao, “Global climatology of planetary boundary layer top obtained from multi-satellite GPS RO observations,” Climate Dynamics, https://doi.org/10.1007/s00382-018-4269-1, 2018.


  4. Ho, S., Anthes, R. A., Ao, C. O., Healy, S., Horanyi, A., Hunt, D., Mannucci, A. J., Pedatella, N., Randel, W. J., Simmons, A., Steiner, A., Xie, F., Yue, X., & Zeng, Z. (2020). The COSMIC/FORMOSAT-3 Radio Occultation Mission after 12 Years: Accomplishments, Remaining Challenges, and Potential Impacts of COSMIC-2, Bulletin of the American Meteorological Society, 101(7), E1107-E1136.


  5. J. Jiang, A.J. Mannucci, H. Su, O. Verkhoglyadova, C. Zhai, J. Cole, L. Donner, T. Inversen, C. Morcrette, L. Roystayn, M. Watanabe, and S. Yukimoto, Ao, C. O., et al. (2015), Evaluation of CMIP5 upper troposphere and lower stratosphere geopotential height with GPS radio occultation observations, J. Geophys. Res. Atmos., 120, 1678–1689, https://doi.org/10.1002/2014JD022239.


  6. Leroy S., C. Ao, O. Verkhoglyadova and M. Oyola (2021), Analyzing the Diurnal Cycle by Bayesian Interpolation on a Sphere, J. Atmospheric Oceanic Technology, https://doi.org/10.1175/JTECH-D-20-0031.1.


  7. Leroy, S., C. Ao, O.P. Verkhoglyadova, Mapping GPS Radio Occultation Data by Bayesian Interpolation, J. Atmosph. Oceanic Technology, doi: https://doi.org/10.1175/JTECH-D-11-00179.1, 2012.


  8. Leroy, S. S., Ao, C. O., & Verkhoglyadova, O. P. (2018), Temperature trends and anomalies in modern satellite data: Infrared sounding and GPS radio occultation. Journal of Geophysical Research: Atmospheres, 123. https://doi.org/10.1029/2018JD028990


  9. Luan, L., Staten, P. W., and Ao, C. O (2020), Seasonal and annual changes of the regional tropical belt in GPS-RO measurements and reanalysis datasets. J. Clim., https://doi.org/10.1175/JCLI-D-19-0671.1.


  10. Padullés, R., Ao, C. O., Turk, F. J., de la Torre Juárez, M., Iijima, B., Wang, K. N., and Cardellach, E. (2020), Calibration and validation of the Polarimetric Radio Occultation and Heavy Precipitation experiment aboard the PAZ satellite, Atmos. Meas. Tech., 13, 1299–1313.


  11. Turk, F.J.; Padullés, R.; Ao, C.O.; Juárez, M.T.; Wang, K.-N.; Franklin, G.W.; Lowe, S.T.; Hristova-Veleva, S.M.; Fetzer, E.J.; Cardellach, E.; Kuo, Y.-H.; Neelin, J.D. (2019), Benefits of a Closely-Spaced Satellite Constellation of Atmospheric Polarimetric Radio Occultation Measurements. Remote Sens. 11, 2399.


  12. Vergados, P., A. J. Mannucci, C. O. Ao, O. Verkhoglyadova, and B. Iijima, “Comparisons of the tropospheric specific humidity from GPS radio occultations with ERA-Interim, NASA MERRA, and AIRS data,” Atmos. Meas. Tech., 11, 1193-1206, https://doi.org/10.5194/amt-11-1193-2018, 2018.


  13. Vergados, P., A. J. Mannucci, C. O. Ao, and E. J. Fetzer, “Using GPS radio occultations to infer the water vapor feedback,” Geophys. Res. Lett., 43, 11,841–11,851, https://doi.org/10.1002/2016GL071017, 2016.


  14. Verkhoglyadova, O. P., A. J. Mannucci, C. O. Ao, B. A. Iijima, and E. R. Kursinski (2015), Effect of small-scale ionospheric variability on GNSS radio occultation data quality, J. Geophys. Res. Space Physics, 120, https://doi.org/10.1002/2015JA021055.


  15. Verkhoglyadova, O.P., S.S. Leroy, and C.O. Ao, Estimation of winds from GPS Radio occultations, J Tech, 2014, 31, 11, 2451-2461, https://doi.org/10.1175/JTECH-D-14-00061.1.


  16. Shume, E. and C. Ao, “Remote sensing of tropospheric turbulence using GPS radio occultation,” Atmos. Meas. Tech., 9, 3175–3182, 2016.


  17. Steiner, A. K., Ladstädter, F., Ao, C. O., Gleisner, H., Ho, S.-P., Hunt, D., Schmidt, T., Foelsche, U., Kirchengast, G., Kuo, Y.-H., Lauritsen, K. B., Mannucci, A. J., Nielsen, J. K., Schreiner, W., Schwärz, M., Sokolovskiy, S., Syndergaard, S., and Wickert, J. (2020), Consistency and structural uncertainty of multi-mission GPS radio occultation records, Atmos. Meas. Tech., 13, 2547–2575, https://doi.org/10.5194/amt-13-2547-2020.


  18. Wang, K.-N.; Ao, C.O.; de la Torre Juárez, M. (2020), GNSS-RO Refractivity Bias Correction Under Ducting Layer Using Surface-Reflection Signal. Remote Sens. 12, 359.


  19. Wang, K.-N., de la Torre Juarez, M., C. O. Ao, and F. Xie, “Correcting negatively-biased refractivity below ducts in GNSS radio occultation: An optimal estimation approach towards improving planetary boundary layer (PBL) characterization,” Atmos. Meas. Tech., 10, 4761–4776,  https://doi.org/10.5194/amt-10-4761-2017, 2017.


  20. Yu, X., F. Xie, and C. O. Ao, “Evaluating the lower tropospheric COSMIC GPS radio occultation sounding quality over the Arctic,” Atmos. Meas. Tech., 2051–2066, 2018.